Transcriptomic Analysis of Clostridium thermocellum in Cellulolytic Consortium after Artificial Reconstruction to Enhance Ethanol Production

نویسندگان

  • Hongyu Li
  • Yuanlong Pan
  • Sandra Chang
  • Ran Du
  • Peipei Li
  • Shizhong Li
چکیده

The cellulolytic and ethanologenic bacterial community is a promising candidate for the production of bioethanol from lignocellulose. In this study, by artificially changing the ratio of Clostridium thermocellum in the cellulolytic consortium H, ethanol production was increased by 72.7%. Metatranscriptomic analysis was used to elucidate the contribution of Clostridium thermocellum to ethanol production. A comprehensive analysis of genes mapped to the Clostridium thermocellum ATCC 27405 genome was performed; the identified gene expression differences related to cellulosic ethanol pathways were carefully studied. The results indicated that the majority of genes involved in lignocellulose degradation, sugar transport, cellodextrin breakdown, glycolysis, and ethanol synthesis were up-regulated in C. thermocellum when added to H (HCt). More than 18 cellulosome-related genes had 15-fold or greater increased expression. The results illustrate the role of C. thermocellum in the cellulolytic consortium H and HCt and provided useful information for identifying genes and preferred pathways. These results will aid in the metabolic and genetic engineering of bacterial strains for more efficient biofuel production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase

BACKGROUND Cellulosic biomass is considered as a promising alternative to fossil fuels, but its recalcitrant nature and high cost of cellulase are the major obstacles to utilize this material. Consolidated bioprocessing (CBP), combining cellulase production, saccharification, and fermentation into one step, has been proposed as the most efficient way to reduce the production cost of cellulosic ...

متن کامل

Improved growth rate in Clostridium thermocellum hydrogenase mutant via perturbed sulfur metabolism

BACKGROUND Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium Clostridium thermocellum is able to rapidly ferment cellulose to ethanol and other products. Recently, genes involved in H2 prod...

متن کامل

Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum.

Specific cellulose hydrolysis rates (g of cellulose/g of cellulase per h) were shown to be substantially higher (2.7- to 4.7-fold) for growing cultures of Clostridium thermocellum as compared with purified cellulase preparations from this organism in controlled experiments involving both batch and continuous cultures. This "enzyme-microbe synergy" requires the presence of metabolically active c...

متن کامل

Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production

BACKGROUND The twin problem of shortage in fossil fuel and increase in environmental pollution can be partly addressed by blending of ethanol with transport fuel. Increasing the ethanol production for this purpose without affecting the food security of the countries would require the use of cellulosic plant materials as substrate. Clostridium thermocellum is an anaerobic thermophilic bacterium ...

متن کامل

Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria

BACKGROUND Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015